List of publications based on Xcompact3d
Over 170 papers have been published based on XCompact3d. See below:
If you used Incompact3d and Xcompact3d, please cite:
Laizet S. & Lamballais E., 2009, High-order compact schemes for incompressible flows: a simple and efficient method with the quasi-spectral accuracy, J. Comp. Phys., 228 (15), 5989--6015
Laizet S. & Li N., 2011, Incompact3d: a powerful tool to tackle turbulence problems with up to 0(10^5) computational cores, Int. J. of Numerical Methods in Fluids, 67 (11), 1735--1757
If you used Winc3d, please cite:
Deskos G., Laizet S., & Palacios R., WInc3D: A novel framework for turbulence-resolving simulations of wind farm wake interactions, Wind Energy, 23, 779-794
If you used QuasIncompact3d, please cite:
Bartholomew P., & Laizet S., A new highly scalable, high-order accurate framework for variable-density flows: Application to non-Boussinesq gravity currents, Computer Physics Communications, 242, 83-94
If you used Xcompact3d, please cite:
Bartholomew P., Deskos G., Frantz R.A.S., Schuch F.N., Lamballais E. & Laizet S, 2020, Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh, SoftwareX, 12, 100550
2023
176-Ji, F., Ding, J., Lu, J., & Wang, W., Direct Numerical Simulation of Thermal Turbulent Boundary Layer Flow over Multiple V-Shaped Ribs at Different Angles, Energies, 16(9), 3831, web link
175-Ding, Y., Pang, B., & Wang, Y., Liutex Shear Interaction in Turbulent Channel Flow, In Liutex and Third Generation of Vortex Identification: Workshop from Aerospace and Aeronautics World Forum 2021 (pp. 109-122). Singapore: Springer Nature Singapore, web link
174-Schuch, F. N., Silvestrini, J. H., Meiburg, E., & Laizet, S., The plunging of hyperpycnal plumes on tilted bed by three-dimensional large-eddy simulations, In Advances in Turbulence: Selected Papers from the XII Spring School on Transition and Turbulence (pp. 41-55). Cham: Springer International Publishing, web link
173-Marques Vidal, G. T., Campo, G. N., Figueiró Vargas, R. M., & Silvestrini, J. H., Direct Numerical Simulation of Bi-Disperse Particle-Laden Gravity Currents on Lock-Exchange Configuration with Different Schmidt Number, In Advances in Turbulence: Selected Papers from the XII Spring School on Transition and Turbulence (pp. 91-106). Cham: Springer International Publishing, web link
172-Perrin, R., & Lamballais, E., Assessment of implicit LES modelling for bypass transition of a boundary layer, Computers & FLuids, 251, 105728, web link
171-Sarath, K. P., & Manu, K. V., The onset of turbulence in decelerating diverging channel flows, Journal of Fluid Mechanics, 962, A30, web link
170-Zhou, Y., Nagata, K., Ito, Y., Sakai, Y., & Hattori, Y., Appearance of the− 5/3 scaling law in spatially intermittent flows with strong vortex shedding, Physics of Fluids, 35(4), 045116, web link
169-Sonoda, T., Liu, Z., Itoh, T., & Hasegawa, Y., Reinforcement learning of control strategies for reducing skin friction drag in a fully developed turbulent channel flow, Journal of Fluid Mechanics, 960, A30, web link
168-Machaca Abregu, W. I., Dari, E. A., & Teruel, F. E., DNS of heat transfer in a plane channel flow with spatial transition, International Journal of Heat and Mass Transfer, 209, 124110, web link
167-O’Connor, J., Diessner, M., Wilson, K., Whalley, R.D., Wynn, A. & Laizet, S., Optimisation and Analysis of Streamwise-Varying Wall-Normal Blowing in a Turbulent Boundary Layer, Flow, Turbulence and Combustion, 110, 993–1021, web link
166-Bempedelis, N., Laizet, S., & Deskos, G., Turbulent entrainment in finite-length wind farms, Journal of Fluid Mechanics, 955, A12, web link
165-Ding, Y., Pang, B. Y., Yan, B. W., Wang, Y. Q., Chen, Y. X., & Qian, Y. H., A Liutex-based subgrid stress model for large-eddy simulation, Journal of Hydrodynamics, 1-6, web link
2022
164-Diessner, M., O'Connor, J., Wynn, A., Laizet, S., Guan, Y., Wilson, K., & Whalley, R. D., Investigating Bayesian optimization for expensive-to-evaluate black box functions: Application in Fluid Dynamics, Frontiers in Applied Mathematics and Statistics, web link
163-Schäfer, K., Frohnapfel, B., & Mellado, J. P., The effect of spanwise heterogeneous surfaces on mixed convection in turbulent channels, Journal of Fluid Mechanics, 950, A22, web link
162-Stefanello, M., Frantz, R. A., Acevedo, O., Degrazia, G., & Silvestrini, J. H, Horizontal Meandering in Direct Numerical Simulation of the Stable Boundary Layer, Quarterly Journal of the Royal Meteorological Society, web link
161-Resseguier, V., Ladvig, M., & Heitz, D., Real-time estimation and prediction of unsteady flows using reduced-order models coupled with few measurements, Journal of Computational Physics, 111631, web link
160-Giannenas, A. E., Bempedelis, N., Schuch, F. N., & Laizet, S., A Cartesian Immersed Boundary Method Based on 1D Flow Reconstructions for High-Fidelity Simulations of Incompressible Turbulent Flows Around Moving Objects, Flow, Turbulence and Combustion, 1-29, web link
159-Steiros, K., Bempedelis, N., & Cicolin, M. M., An analytical blockage correction model for high-solidity turbines, Journal of Fluid Mechanics, 948, A57, web link
158-Machaca Abregu, W. I., Dari, E. A., & Teruel, F. E., Study of the spatial transition in a plane channel flow, Computers & Fluids, 105650, web link
157-Liu, B., Yu, H., Huang, H., Liu, N., & Lu, X., Investigation of nonlocal data-driven methods for subgrid-scale stress modeling in large eddy simulation, AIP Advances, 12(6), 065129, web link
156-Erfanian Nakhchi, M., & Rahmati, M., A Novel Wake Control Approach for Power Generation Improvement of Three Wind Turbines in a Wind Farm, Journal of Engineering for Gas Turbines and Power, GTP-22-1381, web link
155-Sarath, K. P., & Manu, K. V., An investigation of bluff body flow structures in variable velocity flows, Physics of Fluids, 34(3) 034102, web link
154-Giannenas, A. E., Laizet, S., & Rigas, G., Harmonic forcing of a laminar bluff body wake with rear pitching flaps, Journal of Fluids Mechanics, 945, A5, web link
153-Neuhauser, J., Schäfer, K., Gatti, D., & Frohnapfel, B., Simulation of turbulent flow over roughness strips, Journal of Fluids Mechanics, 945, A14, web link
152-Villodi, N., & Manu, K. V., Characteristics of boundary layer transition driven by diverse streamwise vortices, Physics of Fluids, 34, 074113, web link
151-Liu, B., Yu, H., Huang, H., Liu, N., & Lu, X., Investigation of non local data-driven methods for subgrid-scale stress modeling in large eddy simulation, AIP Advances, 12(6), 065129, web link
150-Guo, W., & Prasser, H. M., Direct numerical simulation of turbulent heat transfer in liquid metals in buoyancy-affected vertical channel, International Journal of Heat and Mass Transfer, 194, 123013, web link
149-Hodgkin, A., Laizet, S., & Deskos, G., Do ambient shear and thermal stratification impact wind turbine tip-vortex breakdown?, In journal of Physics: Conference Series, Vol. 2265, No. 2, p. 022061, web link
148-Vianna, F. D., Farenzena, B. A., Pinho, M. S., & Silvestrini, J. H., Spatiotemporal flow features in gravity currents using computer vision methods, Computers & Geosciences, 105146, web link
147-Hodgkin, A., Laizet, S., & Deskos, G., Numerical investigation of the influence of shear and thermal stratification on the wind turbine tip-vortex stability, Wind Energy, 2728, web link
146- Muñoz‐Simón, A., Palacios, R., & Wynn, A., Some modelling improvements for prediction of wind turbine rotor loads in turbulent wind, Wind Energy, 25(2), 333-353, web link
145-Nakhchi, M. E., Naung, S. W., & Rahmati, M., A novel hybrid control strategy of wind turbine wakes in tandem configuration to improve power production, Energy Conversion and Management, 260, 115575, web link
144-Francisco, E. P., Espath, L. F. R., Laizet, S., Silvestrini, J. H., & Calo, V. M., Direct numerical simulations of intrusive density-and particle-driven gravity currents, Physics of Fluids, 34(4), 045116, web link
143-Gómez, H. A., Narváez, G. F., & Schettini, E. B., Vortex induced vibration of four cylinders configurations at critical spacing in 0° and 45° flow incidence angle, Ocean Engineering, 252, 111134, web link
142-Bempedelis, N., & Steiros, S., Analytical all-induction state model for wind turbine wakes, Physical Review Fluids, 7, 034605, web link
141-Liu, L., Franceschini, L., Oliveira, D. F., Galeazzo, F. C., Carmo, B. S., & Stevens, R. J., Evaluating the accuracy of the actuator line model against blade element momentum theory in uniform inflow, Wind Energy Journal, web link
140-Luo, J. L., Pei, J., Yan, Y., & Wang, W. Q., Numerical study of the flow around a hyperbolic cylinder at Reynolds number 3900, Ocean Engineering, 246, 110669, web link
139-Fregni, A., Angeli, D., Cimarelli, A., & Stalio, E., Direct Numerical Simulation of natural, mixed and forced convection in liquid metals: selected results, Nuclear Engineering and Design, 389, 111597, web link
138-Farenzena, B. A., & Silvestrini, J. H., Density currents front velocity uncertainty, Computers & Fluids, 232, 105209, web link
137-Giri, A., Biswas, N., Chase, D.L., Xue, N., Abkarian, M., Mendez, S., Saha, S. & Stone, H.A., Colliding respiratory jets as a mechanism of air exchange and pathogen transport during conversations, Journal of Fluids Mechanics, 930, web link
136-Obligado, M., Brun, C., Silvestrini, J. H., & Schettini, E. B. C., Dissipation Scalings in the Turbulent Boundary Layer at Moderate Reynolds numbers, Flow, Turbulence and Combustion, 1-18, web link
2021
135-Cimarelli, A. & Boga, G., Numerical experiments on turbulent entrainment and mixing of scalars, Journal of Fluid Mechanics, 927, web link
134-Srikanth, V., Huang, C. W., Su, T. S., & Kuznetsov, A.V., Symmetry breaking of turbulent flow in porous media composed of periodically arranged solid obstacles, Journal of Fluid Mechanics, 929, web link
133-Khojasteh, A. R., Laizet, S., Heitz, D., & Yang, Y., Lagrangian and Eulerian dataset of the wake downstream of a smooth cylinder at a Reynolds number equal to 3900, Data in Brief, 107725, web link
132-Narváez, G. F., Lamballais, E., & Schettini, E. B., Simulation of turbulent flow subjected to conjugate heat transfer via a dual immersed boundary method, Computers & Fluids, 229, 105101, web link
131-Hao, K., Tian, A., & Zhou, Y., Characteristics of small-scale motions in a dual-plane jet flow, International Journal of Heat and Fluid Flow, 91, 108851, web link
130-Olivucci, P., Wise, D. J., & Ricco, P., Reduction of turbulent skin-friction drag by passively rotating discs, Journal of Fluid Mechanics, 923, web link
129-Pinto, W. J. G. S., & Margnat, F., Influence of cylinder breadth and shape on the onset of flow unsteadiness and the aeolian tone level, Computers & Fluids, 228,105067, web link
128-Ji, Y., Yao, J., Hussain, F., & Chen, X., Vorticity transports in turbulent channels under large-scale control via spanwise wall jet forcing, Physics of Fluids, 33, 095112, web link
127-Khojasteh, A. R., Heitz, D., Yang, Y., & Laizet, S., Lagrangian Coherent Track Initialisation, Physics of Fluids, 33, 095113, web link
126-Giannenas, A. E., & Laizet, S., A simple and scalable Immersed Boundary Method for high-fidelity simulations of fixed and moving objects on a Cartesian mesh, Applied Mathematical Modelling, 99, 606-627, web link
125-Schuch, F. N., Meiburg, E., & Silvestrini, J. H., Plunging criterion for particle-laden flows over sloping bottoms: Three-dimensional turbulence-resolving simulations, Computers & Geosciences, 104880, web link
124-Mahfoze, O. A., & Laizet, S., Non-explicit Large Eddy Simulations of turbulent channel flows from Reτ= 180 up to Reτ= 5,200, Computers & Fluids, 105019, web link
123-Corsini, R., Fregni, A., Spinolo, M., & Stalio, E., On the turbulent flow past a realistic open-cell metal foam, Journal of Fluid Mechanics, 920, A9, web link
122-Hamzehloo, A., Bartholomew, P., & Laizet, S., Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers, Physics of Fluids, 33(5), 054114, web link
121-Wang, W. Q., Yu, Z. F., Gao, Y., Luo, J. L., & Cao, W. Z., Study on the hydrodynamic characteristics of a marine riser under periodic pulsation disturbance, Ocean Engineering, 223, 108696, web link
120-Guo, W., & Prasser, H. M., Mixed convection study on the influence of low Prandtl numbers and buoyancy in turbulent heat transfer using DNS, Annals of Nuclear Energy, 158, 108258, web link
119-Pinier, B., Lewandowski, R., Mémin, E., & Chandramouli, P., Testing a one-closure equation turbulence model in neutral boundary layers, Computer Methods in Applied Mechanics and Engineering, 376, 113662, web link
118-Moise, P., & Mathew, J., Hysteresis and turbulent vortex breakdown in transitional swirling jets, Journal of Fluid Mechanics, 915, web link
117-Frantz, R. A., Deskos, G., Laizet, S., & Silvestrini, J. H., High-fidelity simulations of gravity currents using a high-order finite-difference spectral vanishing viscosity approach, Computers & Fluids, 221, 104902, web link
116- Wang, W. Q., Yu, Z. F., Gao, Y., Luo, J. L., & Cao, W. Z., Study on the hydrodynamic characteristics of a marine riser under periodic pulsation disturbance, Ocean Engineering, 223, 108696, web link
115- Ross, M., & Bindra, H., Statistical Mechanics-Based Surrogates for Scalar Transport in Channel Flow, Fluids, 6(2), 79, web link
114- Lamballais E., Vicente Cruz, R., & Perrin, R., Viscous and hyperviscous filtering for direct and large-eddy simulation, Journal of Computational Physics, 110115, web link
113- Chen, X., Yao, J., & Hussain, F., Theoretical framework for energy flux analysis of channels under drag control, Physical Review Fluids, 6, 013902, web link
112- Voet, L.J., Ahlfeld, R., Gaymann, A., Laizet, S., & Montomoli, F., A hybrid approach combining DNS and RANS simulations to quantify uncertainties in turbulence modelling, Applied Mathematical Modelling, 89(1), 885-906, web link
2020
111-Balakrishna, N., Mathew, J., & Samanta, A., Inviscid and viscous global stability of vortex rings, Journal of Fluid Mechanics, 902, A9, web link
110-Manoharan, K., Frederick, M., Clees, S., O’Connor, J., & Hemchandra, S., A weakly nonlinear analysis of the precessing vortex core oscillation in a variable swirl turbulent round jet, Journal of Fluid Mechanics, 884, web link
109-Wang, C., Muñóz-Simon, A., Deskos, G., Laizet, S., Palacios, R., Campagnolo, F., & Bottasso, C.L., Code-to-code-to-experiment validation of LES-ALM wind farm simulators, Journal of Physics: Conference Series, Wind and Wind Farms, 1618, 062041, web link
108-Shams, A., Roelofs, F., Tiselj, I., Oder, J., Bartosiewicz, Y., Duponcheel, M., ... & Fregni, A., A collaborative effort towards the accurate prediction of turbulent flow and heat transfer in low-Prandtl number fluids, Nuclear Engineering and Design, 366, 110750, web link
107-Bartholomew P., Deskos G., Frantz R.A.S., Schuch F.N., Lamballais E. & Laizet S, 2020, Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh, SoftwareX, 12, 100550, web link
106-Guo, W., Shams, A., Sato, Y., & Niceno, B., Influence of buoyancy in a mixed convection liquid metal flow for a horizontal channel configuration, International Journal of Heat and Fluid Flow, 85, 108630, web link
105-Corsini, R., & Stalio, E., Direct numerical simulation of turbulence in the wake of a metal foam, International Communications in Heat and Mass Transfer, 115, 104599, web link
104-Jayaraman, B., & Khan, S., Direct numerical simulation of turbulence over two-dimensional waves, AIP Advances, 10(2), 025034, web link
103-Navah, F., de la Llave Plata, M., & Couaillier, V., A high-order multiscale approach to turbulence for compact nodal schemes, Computer Methods in Applied Mechanics and Engineering, 363, 112885, web link
102-Chandramouli, P., Memin, E., & Heitz, D., 4D large scale variational data assimilation of a turbulent flow with a dynamics error model, Journal of Computational Physics, 412, 109446, web link
101-Deskos, G., del Carre, A., & Palacios, R., Assessment of low-altitude atmospheric turbulence models for aircraft aeroelasticity, Journal of Fluids and Structures, 95, 102981, web link
100-Moise, P., Bistability of bubble and conical forms of vortex breakdown in laminar swirling jets, Journal of Fluid Mechanics, 889, A31, web link
99-Xiao, H., Wu, J. L., Laizet, S., & Duan, L., Flows Over Periodic Hills of Parameterized Geometries: A Dataset for Data-Driven Turbulence Modeling From Direct Simulations, Computers & Fluids, 200, 104431, web link
98-Deskos G., Laizet S., & Palacios R., WInc3D: A novel framework for turbulence-resolving simulations of wind farm wake interactions, Wind Energy, 23, 779-794, web link
97-Narváez, G. F., Schettini, E. B., & Silvestrini, J. H., Numerical simulation of flow-induced vibration of two cylinders elastically mounted in tandem by immersed moving boundary method, Applied Mathematical Modelling, 77, 1331-1347, web link
96-Yasuda T., Goto S. & Vassilicos J.C., Formation of power-law scalings of spectra and multiscale coherent structures in the near-field of grid-generated turbulence, Physical Review Fluids, 5, 014601, web link
95-Serra M., Crouzat S., Simon G., Vétel J. & Haller G., Material spike formation in highly unsteady separated flows, Journal of Fluid Mechanics, 880, A30, web link
94-Pinto, W. J. G. S., & Margnat F., Shape optimization for the noise induced by the flow over compact bluff bodies, Computers & Fluids, 198, 104400, web link
2019
93-Mahfoze O.A., Moody A., Wynn A., Whalley R.W. , & Laizet S., Reducing the skin-friction drag of a turbulent boundary-layer flow with low-amplitude wall-normal blowing within a Bayesian optimization framework, Physical Review Fluids, 4, 094601, web link
92-Zhou, Y., Nagata, K., Sakai, Y., & Watanabe, T., Extreme events and non-Kolmogorov $-5/3$ spectra in turbulent flows behind two side-by-side square cylinders, Journal of Fluid Mechanics, 874, 677-698, web link
91-Shams, A., Roelofs, F., Niceno, B., Guo, W., Angeli, D., Stalio, E., Fregnu, A., Duponcheel, M., Bartosiewicz, Y., Tiselj, I. & Oder, J., Reference numerical database for turbulent flow and heat transfer in liquid metals. Nuclear Engineering and Design, 353, 110274, web link
90-Olivucci, P., Ricco, P., & Aghdam, S. K., Turbulent drag reduction by rotating rings and wall-distributed actuation, Physical Review Fluids, 4(9), 093904, web link
89-Wang, Y. Q., Gao, Y. S., Liu, J. M., & Liu, C., Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition, Journal of Hydrodynamics, 31(3), 464-474, web link
88-Khan, S., & Jayaraman, B., Statistical structure and deviations from equilibrium in wavy channel turbulence, Fluids, 4(3), 161, web link
87-Lucchese, L. V., Monteiro, L. R., Schettini, E. B. C., & Silvestrini, J. H., Direct Numerical Simulations of turbidity currents with Evolutive Deposit Method, considering topography updates during the simulation, Computers & Geosciences, 133, 104306, web link
86-Buxton, O. R. H., Breda, M., & Dhall, K., Importance of small-scale anisotropy in the turbulent/nonturbulent interface region of turbulent free shear flows, Physical Review Fluids, 4(3), 034603, web link
85-Fregni, A., Angeli, D., Cimarelli, A., & Stalio, E., Direct Numerical Simulation of a buoyant triple jet at low-Prandtl number, International Journal of Heat and Mass Transfer, 143, 118466, web link
84-Wu, Z., Laurence, D., Utyuzhnikov, S., & Afgan, I., Proper orthogonal decomposition and dynamic mode decomposition of jet in channel crossflow, Nuclear Engineering and Design, 344, 54-68, web link
83-Chandramouli, P., Memin, E., & Heitz, D., 4D Variational Data Assimilation with Large Eddy Simulation, AIAA paper, 2019-3419, web link
82-Wu, J., Xiao, H., Sun, R., & Wang, Q., Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned, Journal of Fluid Mechanics, 869, 553-586, web link
81-Chandramouli, P., Memin, E., Heitz, D., & Fiabane, L., Fast 3D flow reconstructions from 2D cross-plane observations, Experiments in Fluids, 60(2), 30, web link
80-Moise, P., & Mathew, J., Bubble and conical forms of vortex breakdown in swirling jets, Journal of Fluid Mechanics, 873, 322-357, web link
79-Bartholomew P., & Laizet S., A new highly scalable, high-order accurate framework for variable-density flows: Application to non-Boussinesq gravity currents, Computer Physics Communications, 242, 83-94, web link
78-Gonçalves da Silva Pinto W. J. & Margnat F., A shape optimization procedure for cylinders aeolian tone, Computers & Fluids, 182, 37--51, web link
77-Deskos G. Laizet S. &Piggott M.D., Turbulence-resolving simulations of wind turbine wakes, Renewable Energy, 134, 989--1002, web link
76-Wu J., Sun R., Laizet S. & Xiao H., Representation of Stress Tensor Perturbations with Application in Machine-Learning-Assisted Turbulence Modeling, Computer Methods in Applied Mechanics and Engineering, 346, 707-726, web link
2018
75-Wang, Z., Luo, K., Li, D., Tan, J., & Fan, J., Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation, Physics of Fluids, 30(12), 125101, web link
74-Margnat, F., Ioannou, V., & Laizet, S., A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data, Comptes Rendus Mécanique, 346(10), 903-918, web link
73-Schuch, F. N., Pinto, L. C., Silvestrini, J. H., & Laizet, S., Three‐dimensional turbulence‐resolving simulations of the plunge phenomenon in a tilted channel, Journal of Geophysical Research: Oceans, 123(7), 4820-4832, web link
72-Yao, J., Chen, X. & Hussain, F., Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing, Journal of Fluid Mechanics, 852, 678-709, web link
71-Lamarche-Gagnon, M. É., & Vétel, J., An inverse problem to assess the two-component unsteady wall shear rate, International Journal of Thermal Sciences, 130, 278-288, web link
70-Solak I. & Laval J.P., Large-scale motions from a direct numerical simulation of a turbulent boundary layer, Phys. Review E, 98, 033101, web link
69-de Araujo L.A., Schettini E.B.C. & Silvestrini J.H., Direct numerical simulation of the flow around a cylinder with splitter plate: analysis for moderated Reynolds numbers, J. of the Brazilian Society of Mechanical Sciences and Engineering, 40, 276-289, web link
68-Chandramouli P., Heitz D., Laizet S., & Mémin E., Coarse large-eddy simulations in a transitional wake flow with flow models under location uncertainty, Computers & Fluids, 168, 170-189, web link
67-Ioannou V. & Laizet S., Numerical investigation of plasma-controlled turbulent jets for mixing enhancement, Int. J. of Heat and Fluid Flow, 70, 193-205, web link
66-Sebilleau F., Issaa R., Lardeau S. & Walker S., Direct Numerical Simulation of an air-filled differentially heated square cavity with Rayleigh numbers up to 10^11, Int. J. of Heat and Mass transfer, 123, 297-319, web link
65-Dairay T., Lamballais E. & Benhamadouche S., Mesh Node Distribution in Terms of Wall Distance for Large-eddy Simulation of Wall-bounded Flows, Flow, Turbulence and Combustion, 100(3), 617-626, web link
64-Francisco, E.P., Espath, L.F.R., Laizet, S., & Silvestrini, J. H., Reynolds number and settling velocity influence for finite-release particle-laden gravity currents in a basin Computers & Geosciences, 110, 1-9, web link
2017
63-Resseguier V., Mémin E., Heitz D., & Chapron B., Stochastic modelling and diffusion modes for proper orthogonal decomposition models and small-scale flow analysis, Journal of Fluid Mechanics, 826, 888-917, web link
62-Yao J., Chen X., Thomas F. & Hussain F., Large-scale control strategy for drag reduction in turbulent channel flows, Physical Review Fluids, 2, 062601, web link
61-Francisco E.P., Espath L.F.R., & Silvestrini J.H., Direct numerical simulation of bi-disperse particle-laden gravity currents in the channel configuration, Applied Mathematical Modelling, 49, 739-752, web link
60-Diaz Daniel C., Laizet S. & Vassilicos J.C., Wall shear stress fluctuations: mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer, Physics of Fluid, 29(5), 055102, web link
59-Mahfoze O. & Laizet S., Skin-friction drag reduction in a channel flow with streamwise-aligned plasma actuators, Int. J. of Heat and Fluid Flow, 29, 83--94, web link
58-Zhou Y. & Vassilicos J.C., Related self-similar statistics of the turbulent/non-turbulent interface and the turbulence dissipation, J. Fluid Mechanics, 821, 440--457, web link
57-Flageul C., Benhamadouche S., Lamballais E. & Laurence D., On the discontinuity of the dissipation rate associated with the temperature variance at the fluid-solid interface for cases with conjugate heat transfer, Int. J. of Heat and Mass Transfer, 111, 321-328, web link
56-Wu Z., Laurence D., Iacovides H. & Afgan I., Direct simulation of conjugate heat transfer of jet in channel crossflow, Int. J. of Heat and Fluid Flow, 110, 193-208, web link
55-Dairay T., Lamballais E., Laizet S. & Vassilicos J.C., Numerical dissipation vs. subgrid-scale modelling for large eddy simulation, J. Comp. Phys., 337, 252--274, web link
54-Wu Z., Laurence D. & Afgan I., Direct numerical simulation of a low momentum round jet in channel crossflow, Nuclear Engineering and Design, 313, 273–-284, web link
2016
53-Obligado M., Dairay T. & Vassilicos J.C., Nonequilibrium scalings of turbulent wakes, Physical Review Fluids, 1, 044409, web link
52-Dairay T. & Vassilicos J.C., Direct numerical simulation of a turbulent wake: the non-equilibrium dissipation law, Int. J. of Heat and Fluid Flow, 62(A), 68-74, web link
51-Brauner T., Laizet S., Benard N., & Moreau E., Modelling of Dielectric Barrier Discharge Plasma Actuators for Direct Numerical Simulations, AIAA paper, 2016-3774, web link
50-Aghdam S.K. & Ricco P., Laminar and turbulent flows over hydrophobic surfaces with shear-dependent slip length, Physics of Fluids, 28, 035109, web link
49-Boschung J., Peters N. Laizet S. & Vassilicos J.C., Streamlines in stationary homogeneous isotropic turbulence and fractal-generated turbulence, Fluid Dynamics Research, 48, 021403, web link
48-Gronskis, A., & Artana, G., A simple and efficient direct forcing immersed boundary method combined with a high order compact scheme for simulating flows with moving rigid boundaries, Computers & Fluids, 124, 86--104, web link
2015
47-Dairay, T., Roux, S., Fortuné, V., & Brizzi, L. E., On the Capability of PIV-Based Wall Pressure Estimation for an Impinging Jet Flow, Flow, Turbulence and Combustion, 96, 1-26, web link
46-Dairay, T., Obligado M., and Vassilicos J.C. , Non-equilibrium scaling laws in axisymmetric turbulent wakes, J. of Fluid Mechanics, 781, 166--195, web link
45-Laizet S., Nedić J. & Vassilicos J.C., The spatial origin of -5/3 spectra in grid-generated turbulence, Physics of Fluids, 27(6), 065115, web link
44-Laizet S., Nedić J. & Vassilicos J.C., Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid, Int. J. of Computational Fluid Dynamics, 29(3-5), 286--302, web link
43-Pinto L.C., Espath L.F., Laizet S. & Silvestrini J.H., High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents, Physics of Fluids, 27, 056604, web link
42-Laizet S. & Vassilicos J.C., Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient, J. Fluid Mech., 764, 52--75, web link
41-Flageul C., Benhamadouche S., Lamballais E. & Laurence D., DNS of turbulent channel flow with conjugate heat transfer: Effect of thermal boundary conditions on the second moments and budgets, Int. J. Heat and Fluid Flow, 55, 34--44, web link
40-Buxton O. R. H., Modulation of the velocity gradient tensor by concurrent large-scale velocity fluctuations in a turbulent mixing layer, J. Fluid Mech., 777, R1, web link
39-Dairay T., Fortuné V., Lamballais E. & Brizzi L. E., Direct numerical simulation of a turbulent jet impinging on a heated wall, J. Fluid Mech., 764, 362--394, web link
38-Rabey P. K., Wynn A. & Buxton O. R. H., The kinematics of the reduced velocity gradient tensor in a fully developed turbulent free shear flow, J. Fluid Mech., 767, 627--658, web link
2014
37-Jammy, S.P., Hills, N. and Birch, D.M., Boundary conditions and vortex wandering, Journal of Fluid Mechanics, 747, 350--368, web link
36-Gautier R., Laizet S. & Lamballais E., A DNS study of jet control with microjets using an alternating direction forcing strategy, Int. J. of Computational Fluid Dynamics, 28, 393--410, web link
35-Pinto L.C., Espath L.F., Laizet S. & Silvestrini J.H., Two- and three-dimensional Direct Numerical Simulation of particle-laden gravity currents, Computers & Geosciences, 63, 9--16, web link
34-Ortega, M. A., da Mota Girardi, R., & Silvestrini, J. H., Direct Numerical Simulation of the Onset of Vortex Shedding for Blunt Elongated Bodies, Journal of Aerospace Technology and Management, 6(3), 249--266, web link
33-Lamballais E., Direct numerical simulation of a turbulent flow in a rotating channel with a sudden expansion, J. Fluid Mech., 745, 92--131, web link
32-Dairay T., Fortuné V., Lamballais E. & Brizzi L. E., LES of a turbulent jet impinging on a heated wall using high-order numerical schemes, Int. J. Heat and Fluid Flow, 50, 177--187, web link
2013
31-Gronskis A., Heitz D., Memin E., Inflow and Initial conditions for Direct Numerical Simulation based on Adjoint Data Assimilation, J. of Comp. Physics, 242, 480--497, web link
30-Baggaley A. W., Laizet S., Vortex line density in counterflowing He II with laminar and turbulent normal fluid velocity profiles, Physics of Fluids, 25, 115101, web link
29-Laizet S., Vassilicos J.C. & Cambon C., Interscale energy transfer in decaying turbulence and vorticity-strain rate dynamics in grid-generated turbulence, Fluid Dynamics Research, 45(6), 061408, web link
2012
28-Laizet S. & Vassilicos J.C., Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing, Phys. Review E., 86(4), 046302, web link
27-Ortega, M. A., Girardi, R. M., & Silvestrini, J. H., A numerical study of the wake behind a blunt‐trailing‐edged body. Part 2: the topology of the flow, Int. J. for Numerical Methods in Fluids, 69(1), 29--56, web link
26-Laizet S., Fortune V., Lamballais E. & Vassilicos J.C., Low Mach number prediction of the acoustic signature of fractal-generated turbulence, Int. J. Heat and Fluid Flow, 35, 25--32, web link
2011
25-Buxton O.R.H. , Laizet S. & Ganapathisubramani B., The effects of resolution and noise on kinematic features of fine scale turbulence, Expe. in Fluids, 51(5), 1417--1437, web link
24-Buxton O.R.H. , Laizet S. & Ganapathisubramani B., The interaction between strain-rate and rotation in shear flow turbulence from inertial range to dissipative length scales, Phys. of Fluids, 23, 061704, web link
23-Laizet S. & Vassilicos J.C., DNS of fractal-generated turbulence, Flow, Turbulence and Combustion, 87(4), 673--705, web link
22-Laizet S. & Li N., Incompact3d, a powerful tool to tackle turbulence problems with up to 0(10^5) computational cores, Int. J. of Numerical Methods in Fluids, 67(11), 1735--1757, web link
21-Lamballais E., Fortune V. & Laizet S., Straightforward high-order numerical dissipation via the viscous term for Direct and Large Eddy Simulation , J. Comp. Phys., 230(9), 3270--3275, web link
20-Pinto L. C., Schettini E. B. C. & Silvestrini J. H., Numerical analysis of the immersed boundary method applied to the flow around a forced oscillating cylinder, J. of Physics: Conference Series, 296(1), 012011, web link
19-Dallas V. & Vassilicos J. C., The Stagnation Point Structure of Wall-Turbulence and the Law of the Wall in Turbulent Channel Flow, In Progress in Wall Turbulence: Understanding and Modeling, 327-334, web link
2010
18-Lamballais E., Silvestrini J. & Laizet S., Direct numerical simulation of flow separation behind a rounded leading edge: study of curvature effects, Int. J. Heat and Fluid Flow, 31(3), 295--306, web link
17-Laizet S., Lardeau S. & Lamballais E., Direct Numerical Simulation of a mixing-layer downstream a thick splitter plate, Physics of Fluids, 22, 015104, web link
16-Laizet S., Lamballais E. & Vassilicos J.C., A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence, Computers & Fluids, 39(3), 471--484, web link
15-Dallas V., Vassilicos J.C. & Hewitt G.F., Strong polymer-turbulence interactions in viscoelastic turbulent channel flow, Physical Review E, 82(6), 066303, web link
2009
14-Laizet S. & Vassilicos J.C., Multiscale generation of turbulence, J. of Multiscale Modelling, 1, 177--196, web link
13-Gronskis, A., D'Adamo, J., Cammilleri, A., & Artana, G., Reduced order models for wake control with a spinning cylinder, J. of Physics: Conference Series, 166(1), 012016, web link
12-Laizet S. & Lamballais E., High-order compact schemes for incompressible flows: a simple and efficient method with the quasi-spectral accuracy , J. Comp. Phys., 228(15), 5989--6015, web link
11-Dallas V., Vassilicos J.C. & Hewitt G.F., Stagnation point von Kármán coefficient, Physical Review E, 80(4), 046306, web link
2008
10-Lamballais E., Silvestrini J. & Laizet S., Direct numerical simulation of a separation bubble on a rounded finite-width leading edge, Int. J. Heat a nd Fluid Flow, 29(3), 612--625, web link
9-Gronskis, A., D’Adamo, J., Artana, G., Camillieri, A., & Silvestrini, J. H., Coupling mechanical rotation and EHD actuation in flow past a cylinder, J. of Electrostatics, 66(1), 1--7, web link
2007
8-Parnaudeau, P., Heitz, D., Lamballais, E., & Silvestrini, J. H., Direct numerical simulations of vortex shedding behind cylinders with spanwise linear nonuniformity, Journal of Turbulence, (8), N13, web link
2006
7-Laizet S. & Lamballais E., Direct-numerical simulation of the splitting-plate downstream-shape influence upon a mixing layer, C. R. Acad. Sci., C. R. Mecanique, 334, 454--460, web link
2005
6-Golanski, F., Fortuné, V., & Lamballais, E., Noise radiated by a non-isothermal, temporal mixing layer, Theoretical and Computational Fluid Dynamics, 19(6), 391-416, web link
2004
5-Silvestrini, J. H., & Lamballais, E., Direct numerical simulation of oblique vortex shedding from a cylinder in shear flow, International Journal of Heat and Fluid Flow, 25(3), 461-470, web link
4-Fortuné, V., Lamballais, É., & Gervais, Y., Noise radiated by a non-isothermal, temporal mixing layer. Part I: Direct computation and prediction using compressible DNS, Theoretical and Computational Fluid Dynamics, 18(1), 61-81, web link
2003
3-Lardeau, S., Collin, E., Lamballais, E., & Bonnet, J. P., Analysis of a jet–mixing layer interaction, International journal of heat and fluid flow, 24(4), 520-528, web link
2002
2-Silvestrini, J. H., & Lamballais, E., Direct numerical simulation of wakes with virtual cylinders, International Journal of Computational Fluid Dynamics, 16(4), 305-314, web link
1-Lardeau, S., Lamballais, É., & Bonnet, J. P., Direct numerical simulation of a jet controlled by fluid injection, Journal of turbulence, 3, 002-002., web link
If you used Incompact3d and Xcompact3d, please cite:
Laizet S. & Lamballais E., 2009, High-order compact schemes for incompressible flows: a simple and efficient method with the quasi-spectral accuracy, J. Comp. Phys., 228 (15), 5989--6015
Laizet S. & Li N., 2011, Incompact3d: a powerful tool to tackle turbulence problems with up to 0(10^5) computational cores, Int. J. of Numerical Methods in Fluids, 67 (11), 1735--1757
If you used Winc3d, please cite:
Deskos G., Laizet S., & Palacios R., WInc3D: A novel framework for turbulence-resolving simulations of wind farm wake interactions, Wind Energy, 23, 779-794
If you used QuasIncompact3d, please cite:
Bartholomew P., & Laizet S., A new highly scalable, high-order accurate framework for variable-density flows: Application to non-Boussinesq gravity currents, Computer Physics Communications, 242, 83-94
If you used Xcompact3d, please cite:
Bartholomew P., Deskos G., Frantz R.A.S., Schuch F.N., Lamballais E. & Laizet S, 2020, Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh, SoftwareX, 12, 100550
2023
176-Ji, F., Ding, J., Lu, J., & Wang, W., Direct Numerical Simulation of Thermal Turbulent Boundary Layer Flow over Multiple V-Shaped Ribs at Different Angles, Energies, 16(9), 3831, web link
175-Ding, Y., Pang, B., & Wang, Y., Liutex Shear Interaction in Turbulent Channel Flow, In Liutex and Third Generation of Vortex Identification: Workshop from Aerospace and Aeronautics World Forum 2021 (pp. 109-122). Singapore: Springer Nature Singapore, web link
174-Schuch, F. N., Silvestrini, J. H., Meiburg, E., & Laizet, S., The plunging of hyperpycnal plumes on tilted bed by three-dimensional large-eddy simulations, In Advances in Turbulence: Selected Papers from the XII Spring School on Transition and Turbulence (pp. 41-55). Cham: Springer International Publishing, web link
173-Marques Vidal, G. T., Campo, G. N., Figueiró Vargas, R. M., & Silvestrini, J. H., Direct Numerical Simulation of Bi-Disperse Particle-Laden Gravity Currents on Lock-Exchange Configuration with Different Schmidt Number, In Advances in Turbulence: Selected Papers from the XII Spring School on Transition and Turbulence (pp. 91-106). Cham: Springer International Publishing, web link
172-Perrin, R., & Lamballais, E., Assessment of implicit LES modelling for bypass transition of a boundary layer, Computers & FLuids, 251, 105728, web link
171-Sarath, K. P., & Manu, K. V., The onset of turbulence in decelerating diverging channel flows, Journal of Fluid Mechanics, 962, A30, web link
170-Zhou, Y., Nagata, K., Ito, Y., Sakai, Y., & Hattori, Y., Appearance of the− 5/3 scaling law in spatially intermittent flows with strong vortex shedding, Physics of Fluids, 35(4), 045116, web link
169-Sonoda, T., Liu, Z., Itoh, T., & Hasegawa, Y., Reinforcement learning of control strategies for reducing skin friction drag in a fully developed turbulent channel flow, Journal of Fluid Mechanics, 960, A30, web link
168-Machaca Abregu, W. I., Dari, E. A., & Teruel, F. E., DNS of heat transfer in a plane channel flow with spatial transition, International Journal of Heat and Mass Transfer, 209, 124110, web link
167-O’Connor, J., Diessner, M., Wilson, K., Whalley, R.D., Wynn, A. & Laizet, S., Optimisation and Analysis of Streamwise-Varying Wall-Normal Blowing in a Turbulent Boundary Layer, Flow, Turbulence and Combustion, 110, 993–1021, web link
166-Bempedelis, N., Laizet, S., & Deskos, G., Turbulent entrainment in finite-length wind farms, Journal of Fluid Mechanics, 955, A12, web link
165-Ding, Y., Pang, B. Y., Yan, B. W., Wang, Y. Q., Chen, Y. X., & Qian, Y. H., A Liutex-based subgrid stress model for large-eddy simulation, Journal of Hydrodynamics, 1-6, web link
2022
164-Diessner, M., O'Connor, J., Wynn, A., Laizet, S., Guan, Y., Wilson, K., & Whalley, R. D., Investigating Bayesian optimization for expensive-to-evaluate black box functions: Application in Fluid Dynamics, Frontiers in Applied Mathematics and Statistics, web link
163-Schäfer, K., Frohnapfel, B., & Mellado, J. P., The effect of spanwise heterogeneous surfaces on mixed convection in turbulent channels, Journal of Fluid Mechanics, 950, A22, web link
162-Stefanello, M., Frantz, R. A., Acevedo, O., Degrazia, G., & Silvestrini, J. H, Horizontal Meandering in Direct Numerical Simulation of the Stable Boundary Layer, Quarterly Journal of the Royal Meteorological Society, web link
161-Resseguier, V., Ladvig, M., & Heitz, D., Real-time estimation and prediction of unsteady flows using reduced-order models coupled with few measurements, Journal of Computational Physics, 111631, web link
160-Giannenas, A. E., Bempedelis, N., Schuch, F. N., & Laizet, S., A Cartesian Immersed Boundary Method Based on 1D Flow Reconstructions for High-Fidelity Simulations of Incompressible Turbulent Flows Around Moving Objects, Flow, Turbulence and Combustion, 1-29, web link
159-Steiros, K., Bempedelis, N., & Cicolin, M. M., An analytical blockage correction model for high-solidity turbines, Journal of Fluid Mechanics, 948, A57, web link
158-Machaca Abregu, W. I., Dari, E. A., & Teruel, F. E., Study of the spatial transition in a plane channel flow, Computers & Fluids, 105650, web link
157-Liu, B., Yu, H., Huang, H., Liu, N., & Lu, X., Investigation of nonlocal data-driven methods for subgrid-scale stress modeling in large eddy simulation, AIP Advances, 12(6), 065129, web link
156-Erfanian Nakhchi, M., & Rahmati, M., A Novel Wake Control Approach for Power Generation Improvement of Three Wind Turbines in a Wind Farm, Journal of Engineering for Gas Turbines and Power, GTP-22-1381, web link
155-Sarath, K. P., & Manu, K. V., An investigation of bluff body flow structures in variable velocity flows, Physics of Fluids, 34(3) 034102, web link
154-Giannenas, A. E., Laizet, S., & Rigas, G., Harmonic forcing of a laminar bluff body wake with rear pitching flaps, Journal of Fluids Mechanics, 945, A5, web link
153-Neuhauser, J., Schäfer, K., Gatti, D., & Frohnapfel, B., Simulation of turbulent flow over roughness strips, Journal of Fluids Mechanics, 945, A14, web link
152-Villodi, N., & Manu, K. V., Characteristics of boundary layer transition driven by diverse streamwise vortices, Physics of Fluids, 34, 074113, web link
151-Liu, B., Yu, H., Huang, H., Liu, N., & Lu, X., Investigation of non local data-driven methods for subgrid-scale stress modeling in large eddy simulation, AIP Advances, 12(6), 065129, web link
150-Guo, W., & Prasser, H. M., Direct numerical simulation of turbulent heat transfer in liquid metals in buoyancy-affected vertical channel, International Journal of Heat and Mass Transfer, 194, 123013, web link
149-Hodgkin, A., Laizet, S., & Deskos, G., Do ambient shear and thermal stratification impact wind turbine tip-vortex breakdown?, In journal of Physics: Conference Series, Vol. 2265, No. 2, p. 022061, web link
148-Vianna, F. D., Farenzena, B. A., Pinho, M. S., & Silvestrini, J. H., Spatiotemporal flow features in gravity currents using computer vision methods, Computers & Geosciences, 105146, web link
147-Hodgkin, A., Laizet, S., & Deskos, G., Numerical investigation of the influence of shear and thermal stratification on the wind turbine tip-vortex stability, Wind Energy, 2728, web link
146- Muñoz‐Simón, A., Palacios, R., & Wynn, A., Some modelling improvements for prediction of wind turbine rotor loads in turbulent wind, Wind Energy, 25(2), 333-353, web link
145-Nakhchi, M. E., Naung, S. W., & Rahmati, M., A novel hybrid control strategy of wind turbine wakes in tandem configuration to improve power production, Energy Conversion and Management, 260, 115575, web link
144-Francisco, E. P., Espath, L. F. R., Laizet, S., Silvestrini, J. H., & Calo, V. M., Direct numerical simulations of intrusive density-and particle-driven gravity currents, Physics of Fluids, 34(4), 045116, web link
143-Gómez, H. A., Narváez, G. F., & Schettini, E. B., Vortex induced vibration of four cylinders configurations at critical spacing in 0° and 45° flow incidence angle, Ocean Engineering, 252, 111134, web link
142-Bempedelis, N., & Steiros, S., Analytical all-induction state model for wind turbine wakes, Physical Review Fluids, 7, 034605, web link
141-Liu, L., Franceschini, L., Oliveira, D. F., Galeazzo, F. C., Carmo, B. S., & Stevens, R. J., Evaluating the accuracy of the actuator line model against blade element momentum theory in uniform inflow, Wind Energy Journal, web link
140-Luo, J. L., Pei, J., Yan, Y., & Wang, W. Q., Numerical study of the flow around a hyperbolic cylinder at Reynolds number 3900, Ocean Engineering, 246, 110669, web link
139-Fregni, A., Angeli, D., Cimarelli, A., & Stalio, E., Direct Numerical Simulation of natural, mixed and forced convection in liquid metals: selected results, Nuclear Engineering and Design, 389, 111597, web link
138-Farenzena, B. A., & Silvestrini, J. H., Density currents front velocity uncertainty, Computers & Fluids, 232, 105209, web link
137-Giri, A., Biswas, N., Chase, D.L., Xue, N., Abkarian, M., Mendez, S., Saha, S. & Stone, H.A., Colliding respiratory jets as a mechanism of air exchange and pathogen transport during conversations, Journal of Fluids Mechanics, 930, web link
136-Obligado, M., Brun, C., Silvestrini, J. H., & Schettini, E. B. C., Dissipation Scalings in the Turbulent Boundary Layer at Moderate Reynolds numbers, Flow, Turbulence and Combustion, 1-18, web link
2021
135-Cimarelli, A. & Boga, G., Numerical experiments on turbulent entrainment and mixing of scalars, Journal of Fluid Mechanics, 927, web link
134-Srikanth, V., Huang, C. W., Su, T. S., & Kuznetsov, A.V., Symmetry breaking of turbulent flow in porous media composed of periodically arranged solid obstacles, Journal of Fluid Mechanics, 929, web link
133-Khojasteh, A. R., Laizet, S., Heitz, D., & Yang, Y., Lagrangian and Eulerian dataset of the wake downstream of a smooth cylinder at a Reynolds number equal to 3900, Data in Brief, 107725, web link
132-Narváez, G. F., Lamballais, E., & Schettini, E. B., Simulation of turbulent flow subjected to conjugate heat transfer via a dual immersed boundary method, Computers & Fluids, 229, 105101, web link
131-Hao, K., Tian, A., & Zhou, Y., Characteristics of small-scale motions in a dual-plane jet flow, International Journal of Heat and Fluid Flow, 91, 108851, web link
130-Olivucci, P., Wise, D. J., & Ricco, P., Reduction of turbulent skin-friction drag by passively rotating discs, Journal of Fluid Mechanics, 923, web link
129-Pinto, W. J. G. S., & Margnat, F., Influence of cylinder breadth and shape on the onset of flow unsteadiness and the aeolian tone level, Computers & Fluids, 228,105067, web link
128-Ji, Y., Yao, J., Hussain, F., & Chen, X., Vorticity transports in turbulent channels under large-scale control via spanwise wall jet forcing, Physics of Fluids, 33, 095112, web link
127-Khojasteh, A. R., Heitz, D., Yang, Y., & Laizet, S., Lagrangian Coherent Track Initialisation, Physics of Fluids, 33, 095113, web link
126-Giannenas, A. E., & Laizet, S., A simple and scalable Immersed Boundary Method for high-fidelity simulations of fixed and moving objects on a Cartesian mesh, Applied Mathematical Modelling, 99, 606-627, web link
125-Schuch, F. N., Meiburg, E., & Silvestrini, J. H., Plunging criterion for particle-laden flows over sloping bottoms: Three-dimensional turbulence-resolving simulations, Computers & Geosciences, 104880, web link
124-Mahfoze, O. A., & Laizet, S., Non-explicit Large Eddy Simulations of turbulent channel flows from Reτ= 180 up to Reτ= 5,200, Computers & Fluids, 105019, web link
123-Corsini, R., Fregni, A., Spinolo, M., & Stalio, E., On the turbulent flow past a realistic open-cell metal foam, Journal of Fluid Mechanics, 920, A9, web link
122-Hamzehloo, A., Bartholomew, P., & Laizet, S., Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers, Physics of Fluids, 33(5), 054114, web link
121-Wang, W. Q., Yu, Z. F., Gao, Y., Luo, J. L., & Cao, W. Z., Study on the hydrodynamic characteristics of a marine riser under periodic pulsation disturbance, Ocean Engineering, 223, 108696, web link
120-Guo, W., & Prasser, H. M., Mixed convection study on the influence of low Prandtl numbers and buoyancy in turbulent heat transfer using DNS, Annals of Nuclear Energy, 158, 108258, web link
119-Pinier, B., Lewandowski, R., Mémin, E., & Chandramouli, P., Testing a one-closure equation turbulence model in neutral boundary layers, Computer Methods in Applied Mechanics and Engineering, 376, 113662, web link
118-Moise, P., & Mathew, J., Hysteresis and turbulent vortex breakdown in transitional swirling jets, Journal of Fluid Mechanics, 915, web link
117-Frantz, R. A., Deskos, G., Laizet, S., & Silvestrini, J. H., High-fidelity simulations of gravity currents using a high-order finite-difference spectral vanishing viscosity approach, Computers & Fluids, 221, 104902, web link
116- Wang, W. Q., Yu, Z. F., Gao, Y., Luo, J. L., & Cao, W. Z., Study on the hydrodynamic characteristics of a marine riser under periodic pulsation disturbance, Ocean Engineering, 223, 108696, web link
115- Ross, M., & Bindra, H., Statistical Mechanics-Based Surrogates for Scalar Transport in Channel Flow, Fluids, 6(2), 79, web link
114- Lamballais E., Vicente Cruz, R., & Perrin, R., Viscous and hyperviscous filtering for direct and large-eddy simulation, Journal of Computational Physics, 110115, web link
113- Chen, X., Yao, J., & Hussain, F., Theoretical framework for energy flux analysis of channels under drag control, Physical Review Fluids, 6, 013902, web link
112- Voet, L.J., Ahlfeld, R., Gaymann, A., Laizet, S., & Montomoli, F., A hybrid approach combining DNS and RANS simulations to quantify uncertainties in turbulence modelling, Applied Mathematical Modelling, 89(1), 885-906, web link
2020
111-Balakrishna, N., Mathew, J., & Samanta, A., Inviscid and viscous global stability of vortex rings, Journal of Fluid Mechanics, 902, A9, web link
110-Manoharan, K., Frederick, M., Clees, S., O’Connor, J., & Hemchandra, S., A weakly nonlinear analysis of the precessing vortex core oscillation in a variable swirl turbulent round jet, Journal of Fluid Mechanics, 884, web link
109-Wang, C., Muñóz-Simon, A., Deskos, G., Laizet, S., Palacios, R., Campagnolo, F., & Bottasso, C.L., Code-to-code-to-experiment validation of LES-ALM wind farm simulators, Journal of Physics: Conference Series, Wind and Wind Farms, 1618, 062041, web link
108-Shams, A., Roelofs, F., Tiselj, I., Oder, J., Bartosiewicz, Y., Duponcheel, M., ... & Fregni, A., A collaborative effort towards the accurate prediction of turbulent flow and heat transfer in low-Prandtl number fluids, Nuclear Engineering and Design, 366, 110750, web link
107-Bartholomew P., Deskos G., Frantz R.A.S., Schuch F.N., Lamballais E. & Laizet S, 2020, Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh, SoftwareX, 12, 100550, web link
106-Guo, W., Shams, A., Sato, Y., & Niceno, B., Influence of buoyancy in a mixed convection liquid metal flow for a horizontal channel configuration, International Journal of Heat and Fluid Flow, 85, 108630, web link
105-Corsini, R., & Stalio, E., Direct numerical simulation of turbulence in the wake of a metal foam, International Communications in Heat and Mass Transfer, 115, 104599, web link
104-Jayaraman, B., & Khan, S., Direct numerical simulation of turbulence over two-dimensional waves, AIP Advances, 10(2), 025034, web link
103-Navah, F., de la Llave Plata, M., & Couaillier, V., A high-order multiscale approach to turbulence for compact nodal schemes, Computer Methods in Applied Mechanics and Engineering, 363, 112885, web link
102-Chandramouli, P., Memin, E., & Heitz, D., 4D large scale variational data assimilation of a turbulent flow with a dynamics error model, Journal of Computational Physics, 412, 109446, web link
101-Deskos, G., del Carre, A., & Palacios, R., Assessment of low-altitude atmospheric turbulence models for aircraft aeroelasticity, Journal of Fluids and Structures, 95, 102981, web link
100-Moise, P., Bistability of bubble and conical forms of vortex breakdown in laminar swirling jets, Journal of Fluid Mechanics, 889, A31, web link
99-Xiao, H., Wu, J. L., Laizet, S., & Duan, L., Flows Over Periodic Hills of Parameterized Geometries: A Dataset for Data-Driven Turbulence Modeling From Direct Simulations, Computers & Fluids, 200, 104431, web link
98-Deskos G., Laizet S., & Palacios R., WInc3D: A novel framework for turbulence-resolving simulations of wind farm wake interactions, Wind Energy, 23, 779-794, web link
97-Narváez, G. F., Schettini, E. B., & Silvestrini, J. H., Numerical simulation of flow-induced vibration of two cylinders elastically mounted in tandem by immersed moving boundary method, Applied Mathematical Modelling, 77, 1331-1347, web link
96-Yasuda T., Goto S. & Vassilicos J.C., Formation of power-law scalings of spectra and multiscale coherent structures in the near-field of grid-generated turbulence, Physical Review Fluids, 5, 014601, web link
95-Serra M., Crouzat S., Simon G., Vétel J. & Haller G., Material spike formation in highly unsteady separated flows, Journal of Fluid Mechanics, 880, A30, web link
94-Pinto, W. J. G. S., & Margnat F., Shape optimization for the noise induced by the flow over compact bluff bodies, Computers & Fluids, 198, 104400, web link
2019
93-Mahfoze O.A., Moody A., Wynn A., Whalley R.W. , & Laizet S., Reducing the skin-friction drag of a turbulent boundary-layer flow with low-amplitude wall-normal blowing within a Bayesian optimization framework, Physical Review Fluids, 4, 094601, web link
92-Zhou, Y., Nagata, K., Sakai, Y., & Watanabe, T., Extreme events and non-Kolmogorov $-5/3$ spectra in turbulent flows behind two side-by-side square cylinders, Journal of Fluid Mechanics, 874, 677-698, web link
91-Shams, A., Roelofs, F., Niceno, B., Guo, W., Angeli, D., Stalio, E., Fregnu, A., Duponcheel, M., Bartosiewicz, Y., Tiselj, I. & Oder, J., Reference numerical database for turbulent flow and heat transfer in liquid metals. Nuclear Engineering and Design, 353, 110274, web link
90-Olivucci, P., Ricco, P., & Aghdam, S. K., Turbulent drag reduction by rotating rings and wall-distributed actuation, Physical Review Fluids, 4(9), 093904, web link
89-Wang, Y. Q., Gao, Y. S., Liu, J. M., & Liu, C., Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition, Journal of Hydrodynamics, 31(3), 464-474, web link
88-Khan, S., & Jayaraman, B., Statistical structure and deviations from equilibrium in wavy channel turbulence, Fluids, 4(3), 161, web link
87-Lucchese, L. V., Monteiro, L. R., Schettini, E. B. C., & Silvestrini, J. H., Direct Numerical Simulations of turbidity currents with Evolutive Deposit Method, considering topography updates during the simulation, Computers & Geosciences, 133, 104306, web link
86-Buxton, O. R. H., Breda, M., & Dhall, K., Importance of small-scale anisotropy in the turbulent/nonturbulent interface region of turbulent free shear flows, Physical Review Fluids, 4(3), 034603, web link
85-Fregni, A., Angeli, D., Cimarelli, A., & Stalio, E., Direct Numerical Simulation of a buoyant triple jet at low-Prandtl number, International Journal of Heat and Mass Transfer, 143, 118466, web link
84-Wu, Z., Laurence, D., Utyuzhnikov, S., & Afgan, I., Proper orthogonal decomposition and dynamic mode decomposition of jet in channel crossflow, Nuclear Engineering and Design, 344, 54-68, web link
83-Chandramouli, P., Memin, E., & Heitz, D., 4D Variational Data Assimilation with Large Eddy Simulation, AIAA paper, 2019-3419, web link
82-Wu, J., Xiao, H., Sun, R., & Wang, Q., Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned, Journal of Fluid Mechanics, 869, 553-586, web link
81-Chandramouli, P., Memin, E., Heitz, D., & Fiabane, L., Fast 3D flow reconstructions from 2D cross-plane observations, Experiments in Fluids, 60(2), 30, web link
80-Moise, P., & Mathew, J., Bubble and conical forms of vortex breakdown in swirling jets, Journal of Fluid Mechanics, 873, 322-357, web link
79-Bartholomew P., & Laizet S., A new highly scalable, high-order accurate framework for variable-density flows: Application to non-Boussinesq gravity currents, Computer Physics Communications, 242, 83-94, web link
78-Gonçalves da Silva Pinto W. J. & Margnat F., A shape optimization procedure for cylinders aeolian tone, Computers & Fluids, 182, 37--51, web link
77-Deskos G. Laizet S. &Piggott M.D., Turbulence-resolving simulations of wind turbine wakes, Renewable Energy, 134, 989--1002, web link
76-Wu J., Sun R., Laizet S. & Xiao H., Representation of Stress Tensor Perturbations with Application in Machine-Learning-Assisted Turbulence Modeling, Computer Methods in Applied Mechanics and Engineering, 346, 707-726, web link
2018
75-Wang, Z., Luo, K., Li, D., Tan, J., & Fan, J., Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation, Physics of Fluids, 30(12), 125101, web link
74-Margnat, F., Ioannou, V., & Laizet, S., A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data, Comptes Rendus Mécanique, 346(10), 903-918, web link
73-Schuch, F. N., Pinto, L. C., Silvestrini, J. H., & Laizet, S., Three‐dimensional turbulence‐resolving simulations of the plunge phenomenon in a tilted channel, Journal of Geophysical Research: Oceans, 123(7), 4820-4832, web link
72-Yao, J., Chen, X. & Hussain, F., Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing, Journal of Fluid Mechanics, 852, 678-709, web link
71-Lamarche-Gagnon, M. É., & Vétel, J., An inverse problem to assess the two-component unsteady wall shear rate, International Journal of Thermal Sciences, 130, 278-288, web link
70-Solak I. & Laval J.P., Large-scale motions from a direct numerical simulation of a turbulent boundary layer, Phys. Review E, 98, 033101, web link
69-de Araujo L.A., Schettini E.B.C. & Silvestrini J.H., Direct numerical simulation of the flow around a cylinder with splitter plate: analysis for moderated Reynolds numbers, J. of the Brazilian Society of Mechanical Sciences and Engineering, 40, 276-289, web link
68-Chandramouli P., Heitz D., Laizet S., & Mémin E., Coarse large-eddy simulations in a transitional wake flow with flow models under location uncertainty, Computers & Fluids, 168, 170-189, web link
67-Ioannou V. & Laizet S., Numerical investigation of plasma-controlled turbulent jets for mixing enhancement, Int. J. of Heat and Fluid Flow, 70, 193-205, web link
66-Sebilleau F., Issaa R., Lardeau S. & Walker S., Direct Numerical Simulation of an air-filled differentially heated square cavity with Rayleigh numbers up to 10^11, Int. J. of Heat and Mass transfer, 123, 297-319, web link
65-Dairay T., Lamballais E. & Benhamadouche S., Mesh Node Distribution in Terms of Wall Distance for Large-eddy Simulation of Wall-bounded Flows, Flow, Turbulence and Combustion, 100(3), 617-626, web link
64-Francisco, E.P., Espath, L.F.R., Laizet, S., & Silvestrini, J. H., Reynolds number and settling velocity influence for finite-release particle-laden gravity currents in a basin Computers & Geosciences, 110, 1-9, web link
2017
63-Resseguier V., Mémin E., Heitz D., & Chapron B., Stochastic modelling and diffusion modes for proper orthogonal decomposition models and small-scale flow analysis, Journal of Fluid Mechanics, 826, 888-917, web link
62-Yao J., Chen X., Thomas F. & Hussain F., Large-scale control strategy for drag reduction in turbulent channel flows, Physical Review Fluids, 2, 062601, web link
61-Francisco E.P., Espath L.F.R., & Silvestrini J.H., Direct numerical simulation of bi-disperse particle-laden gravity currents in the channel configuration, Applied Mathematical Modelling, 49, 739-752, web link
60-Diaz Daniel C., Laizet S. & Vassilicos J.C., Wall shear stress fluctuations: mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer, Physics of Fluid, 29(5), 055102, web link
59-Mahfoze O. & Laizet S., Skin-friction drag reduction in a channel flow with streamwise-aligned plasma actuators, Int. J. of Heat and Fluid Flow, 29, 83--94, web link
58-Zhou Y. & Vassilicos J.C., Related self-similar statistics of the turbulent/non-turbulent interface and the turbulence dissipation, J. Fluid Mechanics, 821, 440--457, web link
57-Flageul C., Benhamadouche S., Lamballais E. & Laurence D., On the discontinuity of the dissipation rate associated with the temperature variance at the fluid-solid interface for cases with conjugate heat transfer, Int. J. of Heat and Mass Transfer, 111, 321-328, web link
56-Wu Z., Laurence D., Iacovides H. & Afgan I., Direct simulation of conjugate heat transfer of jet in channel crossflow, Int. J. of Heat and Fluid Flow, 110, 193-208, web link
55-Dairay T., Lamballais E., Laizet S. & Vassilicos J.C., Numerical dissipation vs. subgrid-scale modelling for large eddy simulation, J. Comp. Phys., 337, 252--274, web link
54-Wu Z., Laurence D. & Afgan I., Direct numerical simulation of a low momentum round jet in channel crossflow, Nuclear Engineering and Design, 313, 273–-284, web link
2016
53-Obligado M., Dairay T. & Vassilicos J.C., Nonequilibrium scalings of turbulent wakes, Physical Review Fluids, 1, 044409, web link
52-Dairay T. & Vassilicos J.C., Direct numerical simulation of a turbulent wake: the non-equilibrium dissipation law, Int. J. of Heat and Fluid Flow, 62(A), 68-74, web link
51-Brauner T., Laizet S., Benard N., & Moreau E., Modelling of Dielectric Barrier Discharge Plasma Actuators for Direct Numerical Simulations, AIAA paper, 2016-3774, web link
50-Aghdam S.K. & Ricco P., Laminar and turbulent flows over hydrophobic surfaces with shear-dependent slip length, Physics of Fluids, 28, 035109, web link
49-Boschung J., Peters N. Laizet S. & Vassilicos J.C., Streamlines in stationary homogeneous isotropic turbulence and fractal-generated turbulence, Fluid Dynamics Research, 48, 021403, web link
48-Gronskis, A., & Artana, G., A simple and efficient direct forcing immersed boundary method combined with a high order compact scheme for simulating flows with moving rigid boundaries, Computers & Fluids, 124, 86--104, web link
2015
47-Dairay, T., Roux, S., Fortuné, V., & Brizzi, L. E., On the Capability of PIV-Based Wall Pressure Estimation for an Impinging Jet Flow, Flow, Turbulence and Combustion, 96, 1-26, web link
46-Dairay, T., Obligado M., and Vassilicos J.C. , Non-equilibrium scaling laws in axisymmetric turbulent wakes, J. of Fluid Mechanics, 781, 166--195, web link
45-Laizet S., Nedić J. & Vassilicos J.C., The spatial origin of -5/3 spectra in grid-generated turbulence, Physics of Fluids, 27(6), 065115, web link
44-Laizet S., Nedić J. & Vassilicos J.C., Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid, Int. J. of Computational Fluid Dynamics, 29(3-5), 286--302, web link
43-Pinto L.C., Espath L.F., Laizet S. & Silvestrini J.H., High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents, Physics of Fluids, 27, 056604, web link
42-Laizet S. & Vassilicos J.C., Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient, J. Fluid Mech., 764, 52--75, web link
41-Flageul C., Benhamadouche S., Lamballais E. & Laurence D., DNS of turbulent channel flow with conjugate heat transfer: Effect of thermal boundary conditions on the second moments and budgets, Int. J. Heat and Fluid Flow, 55, 34--44, web link
40-Buxton O. R. H., Modulation of the velocity gradient tensor by concurrent large-scale velocity fluctuations in a turbulent mixing layer, J. Fluid Mech., 777, R1, web link
39-Dairay T., Fortuné V., Lamballais E. & Brizzi L. E., Direct numerical simulation of a turbulent jet impinging on a heated wall, J. Fluid Mech., 764, 362--394, web link
38-Rabey P. K., Wynn A. & Buxton O. R. H., The kinematics of the reduced velocity gradient tensor in a fully developed turbulent free shear flow, J. Fluid Mech., 767, 627--658, web link
2014
37-Jammy, S.P., Hills, N. and Birch, D.M., Boundary conditions and vortex wandering, Journal of Fluid Mechanics, 747, 350--368, web link
36-Gautier R., Laizet S. & Lamballais E., A DNS study of jet control with microjets using an alternating direction forcing strategy, Int. J. of Computational Fluid Dynamics, 28, 393--410, web link
35-Pinto L.C., Espath L.F., Laizet S. & Silvestrini J.H., Two- and three-dimensional Direct Numerical Simulation of particle-laden gravity currents, Computers & Geosciences, 63, 9--16, web link
34-Ortega, M. A., da Mota Girardi, R., & Silvestrini, J. H., Direct Numerical Simulation of the Onset of Vortex Shedding for Blunt Elongated Bodies, Journal of Aerospace Technology and Management, 6(3), 249--266, web link
33-Lamballais E., Direct numerical simulation of a turbulent flow in a rotating channel with a sudden expansion, J. Fluid Mech., 745, 92--131, web link
32-Dairay T., Fortuné V., Lamballais E. & Brizzi L. E., LES of a turbulent jet impinging on a heated wall using high-order numerical schemes, Int. J. Heat and Fluid Flow, 50, 177--187, web link
2013
31-Gronskis A., Heitz D., Memin E., Inflow and Initial conditions for Direct Numerical Simulation based on Adjoint Data Assimilation, J. of Comp. Physics, 242, 480--497, web link
30-Baggaley A. W., Laizet S., Vortex line density in counterflowing He II with laminar and turbulent normal fluid velocity profiles, Physics of Fluids, 25, 115101, web link
29-Laizet S., Vassilicos J.C. & Cambon C., Interscale energy transfer in decaying turbulence and vorticity-strain rate dynamics in grid-generated turbulence, Fluid Dynamics Research, 45(6), 061408, web link
2012
28-Laizet S. & Vassilicos J.C., Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing, Phys. Review E., 86(4), 046302, web link
27-Ortega, M. A., Girardi, R. M., & Silvestrini, J. H., A numerical study of the wake behind a blunt‐trailing‐edged body. Part 2: the topology of the flow, Int. J. for Numerical Methods in Fluids, 69(1), 29--56, web link
26-Laizet S., Fortune V., Lamballais E. & Vassilicos J.C., Low Mach number prediction of the acoustic signature of fractal-generated turbulence, Int. J. Heat and Fluid Flow, 35, 25--32, web link
2011
25-Buxton O.R.H. , Laizet S. & Ganapathisubramani B., The effects of resolution and noise on kinematic features of fine scale turbulence, Expe. in Fluids, 51(5), 1417--1437, web link
24-Buxton O.R.H. , Laizet S. & Ganapathisubramani B., The interaction between strain-rate and rotation in shear flow turbulence from inertial range to dissipative length scales, Phys. of Fluids, 23, 061704, web link
23-Laizet S. & Vassilicos J.C., DNS of fractal-generated turbulence, Flow, Turbulence and Combustion, 87(4), 673--705, web link
22-Laizet S. & Li N., Incompact3d, a powerful tool to tackle turbulence problems with up to 0(10^5) computational cores, Int. J. of Numerical Methods in Fluids, 67(11), 1735--1757, web link
21-Lamballais E., Fortune V. & Laizet S., Straightforward high-order numerical dissipation via the viscous term for Direct and Large Eddy Simulation , J. Comp. Phys., 230(9), 3270--3275, web link
20-Pinto L. C., Schettini E. B. C. & Silvestrini J. H., Numerical analysis of the immersed boundary method applied to the flow around a forced oscillating cylinder, J. of Physics: Conference Series, 296(1), 012011, web link
19-Dallas V. & Vassilicos J. C., The Stagnation Point Structure of Wall-Turbulence and the Law of the Wall in Turbulent Channel Flow, In Progress in Wall Turbulence: Understanding and Modeling, 327-334, web link
2010
18-Lamballais E., Silvestrini J. & Laizet S., Direct numerical simulation of flow separation behind a rounded leading edge: study of curvature effects, Int. J. Heat and Fluid Flow, 31(3), 295--306, web link
17-Laizet S., Lardeau S. & Lamballais E., Direct Numerical Simulation of a mixing-layer downstream a thick splitter plate, Physics of Fluids, 22, 015104, web link
16-Laizet S., Lamballais E. & Vassilicos J.C., A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence, Computers & Fluids, 39(3), 471--484, web link
15-Dallas V., Vassilicos J.C. & Hewitt G.F., Strong polymer-turbulence interactions in viscoelastic turbulent channel flow, Physical Review E, 82(6), 066303, web link
2009
14-Laizet S. & Vassilicos J.C., Multiscale generation of turbulence, J. of Multiscale Modelling, 1, 177--196, web link
13-Gronskis, A., D'Adamo, J., Cammilleri, A., & Artana, G., Reduced order models for wake control with a spinning cylinder, J. of Physics: Conference Series, 166(1), 012016, web link
12-Laizet S. & Lamballais E., High-order compact schemes for incompressible flows: a simple and efficient method with the quasi-spectral accuracy , J. Comp. Phys., 228(15), 5989--6015, web link
11-Dallas V., Vassilicos J.C. & Hewitt G.F., Stagnation point von Kármán coefficient, Physical Review E, 80(4), 046306, web link
2008
10-Lamballais E., Silvestrini J. & Laizet S., Direct numerical simulation of a separation bubble on a rounded finite-width leading edge, Int. J. Heat a nd Fluid Flow, 29(3), 612--625, web link
9-Gronskis, A., D’Adamo, J., Artana, G., Camillieri, A., & Silvestrini, J. H., Coupling mechanical rotation and EHD actuation in flow past a cylinder, J. of Electrostatics, 66(1), 1--7, web link
2007
8-Parnaudeau, P., Heitz, D., Lamballais, E., & Silvestrini, J. H., Direct numerical simulations of vortex shedding behind cylinders with spanwise linear nonuniformity, Journal of Turbulence, (8), N13, web link
2006
7-Laizet S. & Lamballais E., Direct-numerical simulation of the splitting-plate downstream-shape influence upon a mixing layer, C. R. Acad. Sci., C. R. Mecanique, 334, 454--460, web link
2005
6-Golanski, F., Fortuné, V., & Lamballais, E., Noise radiated by a non-isothermal, temporal mixing layer, Theoretical and Computational Fluid Dynamics, 19(6), 391-416, web link
2004
5-Silvestrini, J. H., & Lamballais, E., Direct numerical simulation of oblique vortex shedding from a cylinder in shear flow, International Journal of Heat and Fluid Flow, 25(3), 461-470, web link
4-Fortuné, V., Lamballais, É., & Gervais, Y., Noise radiated by a non-isothermal, temporal mixing layer. Part I: Direct computation and prediction using compressible DNS, Theoretical and Computational Fluid Dynamics, 18(1), 61-81, web link
2003
3-Lardeau, S., Collin, E., Lamballais, E., & Bonnet, J. P., Analysis of a jet–mixing layer interaction, International journal of heat and fluid flow, 24(4), 520-528, web link
2002
2-Silvestrini, J. H., & Lamballais, E., Direct numerical simulation of wakes with virtual cylinders, International Journal of Computational Fluid Dynamics, 16(4), 305-314, web link
1-Lardeau, S., Lamballais, É., & Bonnet, J. P., Direct numerical simulation of a jet controlled by fluid injection, Journal of turbulence, 3, 002-002., web link